
Tuo Chen (陳拓) (potato008@gmail.com)

Suzaki Lab (須崎研究室)

Institute of Information Security (IISEC), Japan

2024-08-23

A Study on Transient Execution
Vulnerabilities of RISC-V Implementations

(RISC-V 实现的瞬态执行漏洞研究)

RISC-V Summit China 2024 (RISC-V 中国峰会 2024)

This work is licensed under CC BY-SA 4.0

https://creativecommons.org/licenses/by-sa/4.0/?ref=chooser-v1

22Self introduction

● About me
● Master student Tuo Chen (陳拓)

● IISEC (2023~): information security of open hardware

● Renesas Electronics group (2017~2023): prototype evaluation, device test,

mass production setup for semiconductor tests, export procedures, etc.

● NUAA, CEIE (2013~2017): electronic circuit, microwave systems and devices

● About IISEC Suzaki Lab: https://lab.iisec.ac.jp/~suzaki_lab/index-e.html

● Prof. Kuniyasu Suzaki（須崎有康教授）
● Research topics: RISC-V, TEE, virtualization, confidential computing, etc.

● Currently other members are researching on: FPGA cryptography

applications, malicious activity statistics, fuzzing for security purposes,

vehicle cyber security, infosec of IoT devices, confidential computing + TEE

https://www.iisec.ac.jp/
https://lab.iisec.ac.jp/~suzaki_lab/index-e.html

33

● Background

● Cache timing side-channel attack (SCA)
● Techniques

● Transient execution vulnerabilities
● Summary of review papers

● Spectre attacks
● Feasibility on RISC-V implementations

● Mitigation

● Conclusion

Contents

44Background (1)

● Out-of-order (OoO) execution
● Paradigm that allows subsequent instructions in the pipeline to be executed

ahead of or concurrently with preceding ones, rather than strictly adhering
to program order (=> in-order execution).

● A OoO CPU temporarily stores executed instructions in the reorder buffer,
and later adjusts the order in which they are reflected in the registers during
the retire stage, thereby achieving the same results as an in-order processor.

● Mainstream x86 CPUs and some ARM processors have adopted OoO
execution. Commercial RISC-V OoO core designs are still relatively few, but
their numbers are growing rapidly.

Source: https://www.techspot.com/article/2000-anatomy-cpu/

Name Maintainer Category

AX65 Andes Commercial

BOOM UC Berkeley Academic

C910, C920 XuanTie Commercial

P550, P670 SiFive Commercial

RSD U Tokyo Academic

Tooba U Cambridge Academic

Xiangshan BOSC Academic

Some known RISC-V OoO cores

A OoO CPU can execute In
strs No.4 and No.5 ahead of
Instrs No.2 and No.3, witho
ut waiting for their comple
tion, reducing the overall e
xecution time.

However, in terms of imple
mentation cost-performanc
e, OoO processors do not n
ecessarily have the advanta
ge. (See Ref)

Ref: [1] S. Hily and A. Seznec, 1999

https://www.techspot.com/article/2000-anatomy-cpu/
https://ieeexplore.ieee.org/abstract/document/744331

55Background (2)

● Speculative execution
● The premise of OoO execution is the ability to recognize the program's flow.

Obviously, waiting, or selecting the program's direction randomly/evenly, is
inefficient. In contrast, determining it as early as possible is beneficial.

● Retrieving and processing information that "might be needed" based on
certain grounds (e. g. information from predictors), before the definite results
come, is called speculative execution.

● Speculative execution requires both parallel processing and OoO. Specific
implementation methods are diverse. Examples include branch prediction,
memory dependence prediction, value prediction, Gather instruction, etc.

Flow of a non-speculative execution

This step takes time.

66Background (3)

● Speculative execution (cont.)
● In speculative execution, if a program instruction depends on an incomplete

operation, the CPU first saves the current register state as a checkpoint.
Then, it tentatively executes the state-undetermined instruction using the
various methods mentioned before.

○ If the trial result is correct, it saves execution time, and the instruction is retired as usual.
○ If the trial result is incorrect, a rollback is necessary. The incorrect trial results or in-progress

instructions are discarded, the state saved at the checkpoint is restored, and the correct results
are obtained anew.

Flow of the speculative execution

A successful speculation
makes a contribution.

A failed speculation
brings a penalty.

77Background (4)

● Branch prediction
● One method of improving speculative execution. By predicting the most

likely outputs and increasing the number of correct instructions executed,
performance is improved. Almost all RISC-V OoO CPUs have adopted this.

● BPU (Branch Prediction Unit) utilizes various CPU components:
○ PHT (Pattern History Table), BHT (Branch History Table), CBP (Conditional Branch

Predictor): Separate local history buffers for handling conditional branches with two possible
directions. 2-level branch prediction is often used. The 2 levels are: ① remembering the patterns
that occurred in the last n times, and ② selecting a prediction value from these records using a 2-
bit counter (a state machine with 4 possible outcomes).

○ BTB (Branch Target Buffer): A global history buffer for direct and indirect branches. It is not
limited to two choices and can remember frequently used destination addresses of jump.

○ RSB (Return Stack Buffer), RAS (Return Address Stack): The most frequently used part of
the software call stack (return addresses) is copied to and stored in this hardware buffer.

○ LP (Loop Predictor, found in C910, C920), FTB (Fetch Target Buffer, an alternative of the BTB
found in Xiangshan Nanhu), and hybrid branch predictors of ones above.

In 2-level prediction, each branch
has 4 states. Why not simpler 1-le
vel 2 states (taken vs. not taken)?
A 4-state machine is stabler, less li
kely to change its prediction value
after just one change in the outpu
t, thus increasing the accuracy.

Source: https://en.wikipedia.org/wiki/Branch_predictor

①

②

https://en.wikipedia.org/wiki/Branch_predictor

88Background (5)

● Branch prediction (cont.)
● BP is not unique to OoO CPUs; it can also be implemented in in-order

processors. Although the latter do not perform speculative execution, it is
still effective for improving data retrieval speed (speculative prefetching).

Source: https://en.wikipedia.org/wiki/Instruction_pipelining#Branches

● Speculative prefetching of in-order
processors:

● The CPU fetches (IF) the next instruction to
the Icache, and decodes (ID) it, but does not
proceed to execution (EX). Naturally, it also
does not reach memory access (MEM).

● Speculative execution of out-of-
order processors:

● Complex hardware mechanisms determine
the dependencies between instructions and
executes (EX) them based on CPU resource
availability. In the MEM step, information is
loaded from main memory into the Dcache.

https://en.wikipedia.org/wiki/Instruction_pipelining#Branches

99Background (6)

● Memory dependence prediction
● Another method of improving speculative execution. An OoO processor with

a memory dependence predictor (MDP) predicts whether two memory
operations that access the same memory location (such as a preceding Store
op and a subsequent Load op) interact with each other.

● By far, Xiangshan and RSD have been observed to integrate MDPs with
dynamic speculation and synchronization such as store sets, store barrier, etc.

● Speculative memory operations require the CPU’s load/store unit (LSU) can
accomplish memory disambiguation (addressing ordering violations). For that
purpose, a specific MDP is an early assistance, but not a precondition. There
are RISC-V OoO CPUs, such as BOOMv3, that do not possess an MDP but
still allow naive memory dependence speculations, i.e. a load may bypass any
preceding store.

Note: memory dependencies:

Read-After-Write (RAW),
“true dependencies”:
X2:=X1+X3
X4:=X2+X3

Write-After-Read (WAR),
“anti dependencies”:
Y4:=Y1+Y3
Y3:=Y1+Y2

Write-After-Write (WAW),
“output dependencies”:
Z2:=Z1+Z3
Z2:=Z4+Z5

1010Cache timing side-channel attack (SCA) (1)

● Cause
● Registers and main memory transfer data through the CPU's cache. The cache holds a

portion of the main memory's contents, allowing for a quick response when data
transfer requests are made again.

● For a failed speculative execution, the CPU performs a rollback. The purpose is to
ensure that, from the perspective of the architecture, the overall state of the device is
as if “the erroneous execution never occurred”.

● However, the micro-architectural physical behavior of the cache is not canceled. Even
if the secret data can not be directly read out, it may still be loaded into the cache,
resulting in much shorter cache access time t2, compared to the relatively longer RAM
access time t1.

Process of the cache timing SCA

● If the trace is not concealed and
can be observed, an attacker
may infer the secret data by
measuring difference t1 – t2,
creating a vulnerability.

● There are many specific cache
timing SCA techniques.

1111Cache timing side-channel attack (SCA) (2)

● Techniques
● Flush[2]/Evict[3]+Reload, Flush+Flush[4], Flush/Evict+Fault[6]

● Evict+Time[5], Cache+Time[6]

● Prime+Probe[5], Prime+Count[6]

● Simple branch prediction analysis[6]

● Branch shadowing[6]

● CycleDrift[6] => a RISC-V-specific attack technique using rdinstret()
● ...

Example: Flush/Evict+Reload

HGF

① Flush

HGF?

② Wait

HGFA

③-1 Reload (hit)

HGF?

③-2 Reload (unused)

Low latency access High latency access

OR

Victim activities

A
(Fetched from main memory)

(Already in the cache line)

(Infer)

HGFA

① Evict

OR ③-1

③-1

③-1

③-2

③-2

[2] Y. Yarom and K. Falkner, USENIX Security 14, 2014, pp. 719–732.
[3] P. Kocher et al., IEEE S&P 2019, San Francisco, CA, USA: May 2019, pp. 1–19.
[4] D. Gruss, C. Maurice, K. Wagner, and S. Mangard, DIMVA 2016. Jul. 2016, pp. 279–299.
[5] D. Gruss, R. Spreitzer, and S. Mangard, USENIX Security 15, 2015, pp. 897–912.
[6] L. Gerlach, D. Weber, R. Zhang, and M. Schwarz, IEEE S&P 2023, May 2023, pp. 2321–2338.

https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom
https://ieeexplore.ieee.org/document/8835233/
https://doi.org/10.1007/978-3-319-40667-1_14
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/gruss
https://ieeexplore.ieee.org/document/10179399/

1212Cache timing side-channel attack (SCA) (3)

● Techniques (cont.)

③ Measure execution time t2

HGFE

① Measure execution time t1

HGFA

② Evict existing values of a cache
line with attacker’s ones

HGFA
(Compare)

Evict+Time（hit if t2 > t1）

③ Measure execution time t2

HGFE

① Measure execution time t1

A

② Flush the entire cache and use a
cache line of interest

A
(Compare)

Cache+Time （hit if t2 < t1）

HGF
HGF?

② Wait

HGFA

③-1 Reload (hit)

HGF?

③-2 Reload (unused)

Low latency access High latency access

OR

Victim activities

A
(Fetched from main memory)

(Already in the cache line)HGFA

① Evict

OR

HGF

① Flush

HGF?

② Jump and
crash

HGFA

③-1 Fault
handling (hit)

HGF?

③-2 Fault
handling (unused)

Low latency access High latency access

OR

Victim activities

A
(Fetched from main memory)

(Already in the cache line)

(Infer)

HGFA

① Evict

OR

Flush/Evict+Reload

Flush/Evict+Fault

Different operations

DCBA ① Prime

???? ② Wait

D?B? ③ ProbeDCBA OR

A C
(Fetched from
main memory)

(Unused) (Used)

Prime+Probe

1313Transient execution vulnerabilities (1)

● Definition
● A security issue where a device’s transient execution state is exploited to

indirectly infer secret data within access-restricted memory areas. It includes
three successive phases[7]: an initial preparation phase, a later access phase,
plus a final transmission phase.

Spectre
[7] Allison Randal, “This is How You Lose the Transient Execution War,” Sep. 06, 2023, arXiv: arXiv:2309.03376.

● Categories
● Spectre-type (speculation-based fault injection + SCA): BCB, BTI, ret2spec,

SSB, Retbleed, Inception, BHI, GDS, SCO, ZDI, etc.
● Meltdown-type (exception-based fault injection + SCA): RDCL, LazyFP,

Foreshadow, Fallout, etc.
● Others (different combinations and purposes, such as double fault injections):

LVI, GVI, etc.

Meltdown MDS LVI
Downfall

(GDS, GVI)
iLeakage ... and more

CROSSTalk,
Retbleed,
INCEPTION

http://arxiv.org/abs/2309.03376

1414Transient execution vulnerabilities (2)

A. Gonzalez, B. Korpan, E. Younis, and J. Zhao, “Spectrum: Classifying, replicating and mitigating Sp
ectre attacks on a speculating RISC-V microarchitecture,” University of California at Berkeley, 2019.
The first paper focsuing on taxamony of Spectre attacks and defenses. The authors also replicate Spe
ctre v1 and v2 on BOOMv2, an academic RISC-V processor.

● Summary of review papers
● From 2018 when Spectre and Meltdown were revealed, until 2024-08, more

than 28 general surveys (not counting individual technical proposal papers)
regarding transient execution attacks (TEAs) and their countermeasures have
been published. Since RISC-V is still an emerging ISA, it is not included in the
scope of discussion in most reviews.

● Among them, I recommend some milestone RISC-V+TEA-related survey
papers for a careful reading.

Allison Randal, “This is How You Lose the Transient Execution War,” Sep. 06, 2023, arXiv:2309.03376.
This is the latest review and a novel inspection into mechanisms of TEAs. Thanks to the author Ms.
Randal as a leader in the OSS world, RISC-V also receives her attention in this paper.

L. Gerlach, D. Weber, R. Zhang, and M. Schwarz, “A Security RISC: Microarchitectural Attacks on H
ardware RISC-V CPUs,” in IEEE S&P 2023, San Francisco, CA, USA: May 2023, pp. 2321–2338.
This paper demonstrates many cache timing SCAs (including 3 newly proposed techniques) against
RISC-V in-order processors. It also provides 6 case studies of high practicalities.

https://people.eecs.berkeley.edu/~kubitron/courses/cs262a-F18/projects/reports/project4_report.pdf
https://people.eecs.berkeley.edu/~kubitron/courses/cs262a-F18/projects/reports/project4_report.pdf
http://arxiv.org/abs/2309.03376
https://ieeexplore.ieee.org/document/10179399/
https://ieeexplore.ieee.org/document/10179399/

1515Transient execution vulnerabilities (3)

● Summary of review papers (cont.)
● There are other important reviews about TEAs on x86 instances.

W. Kosasih, Y. Feng, C. Chuengsatiansup, Y. Yarom, and Z. Zhu, “SoK: Can We Really Detect Cache
Side-Channel Attacks by Monitoring Performance Counters?,” at the AsiaCCS 2024, Jan. 2024.
The authors were skeptical of numerous papers published in the past ten years, which propose “dete
cting cache SCAs by monitoring the high performance counter (HPC) of processors”, so they tested
the effectiveness of these prior studies in real-world scenarios using a gadget made up of Spectre v1
and Flush+Reload. They reached a negative conclusion, indicating that using HPC to detect side cha
nnels is not yet feasible even for mature ISAs like x86. It is a good lesson for new ISAs like RISC-V.

L. Fiolhais and L. Sousa, “Transient-Execution Attacks: A Computer Architect Perspective,” ACM Co
mput. Surv., vol. 56, no. 3, p. 74:1-74:38, Oct. 2023
T. Ghasempouri, J. Raik, C. Reinbrecht, S. Hamdioui, and M. Taouil, “Survey on Architectural Attack
s: A Unified Classification and Attack Model,” ACM Comput. Surv., vol. 56, no. 2, p. 42:1-42:32, Sep. 2
023
For various cache side-channel vulnerabilities, the principles are explained, and refreshing taxonomi
es are proposed.

S. Cauligi, C. Disselkoen, D. Moghimi, G. Barthe, and D. Stefan, “SoK: Practical Foundations for Soft
ware Spectre Defenses,” IEEE S&P 2022, May 2022, pp. 666–680.
G. Hu, Z. He, and R. Lee, “SoK: Hardware Defenses Against Speculative Execution Attacks,” SEED 20
21, Sep. 2021, pp. 108–120.
Systematic explanations of software and hardware defenses against transient execution attacks like
Spectre.

https://yuval.yarom.org/pdfs/KosasihFCYZ24.pdf
https://yuval.yarom.org/pdfs/KosasihFCYZ24.pdf
https://dl.acm.org/doi/10.1145/3603619
https://dl.acm.org/doi/10.1145/3603619
https://doi.org/10.1145/3604803
https://doi.org/10.1145/3604803
https://doi.org/10.1145/3604803
https://www.computer.org/csdl/proceedings-article/sp/2022/131600b517/1FlQz5KjQZ2
https://www.computer.org/csdl/proceedings-article/sp/2022/131600b517/1FlQz5KjQZ2
http://arxiv.org/abs/2301.03724
http://arxiv.org/abs/2301.03724

1616Spectre attacks (1)

● Definition and variants
● According to the aforementioned “Spectre white paper” from P. Kocher et al.

[3], Spectre attacks involve inducing a victim to speculatively perform
operations that would not occur during correct program execution and
which leak the victim’s confidential information via a side channel to the
adversary. That is, a category of TEA that combines speculation-based fault
injection and SCA.

● Variants: BCB (v1), BTI (v2), retspec (v5), SSB (v4), BHI, Retbleed, etc.

Predictors Mechanisms Variants

PHT/BHT/CBP
Conditional
branch

BCB, v1.1, etc

BTB
Direct or
indirect branch

BTI, Retbleed,
etc

RSB/RAS
Return address
prediction

ret2spec,
INCEPTION,
etc.

LSU (w/ or w/o
MDP)

Store-load
forwarding

SSB, CTL, etc

Others (BHI, SCO, ZDI)

BTI
BHI

BCB

1717Spectre attacks (2)

● Example 1: flow of the BCB (Bound Check Bypass)
1. Preparation phase: Within the boundary of len(array1), repeatedly feed a valid x value into the

conditional branch, making the processor's branch predictor trust this path and predicts that its
subsequent outcomes will also be “true”.

2. Access phase: Provide a malicious value x=k that exceeds the memory array boundary len(array1),
i.e. k>=len(array1). The CPU, still predicting the path as “true” from previous phase 1,
transiently performs a memory access beyond the boundary and loads the normally
inaccessible memory address array1[k] into the L1 data cache.

3. Transmission phase: The CPU will correct states to “false” later, but before that, the address
array1[k] remains in the cache for a short time. The attacker then conducts a cache timing SCA to
indirectly infer the secret data.

Example codes:

- Reading out-of-bounds:
if (x < len(array1)) { y =
array2[array1[x] * 4096];

- Writing out-of-bounds:
if (x < len(array)) { array[x] = value; }

Slow (Secret
leaked)

①

②

③

Fast Slow Fast

(main memory)↓

(start)array1

…(legal)array1 + x

(bound)array1 + len(array)

secretarray1 + k

(remains)(data cache) →

①

②

Fetched into D$

③ Secret inferred

Training with x

Attack with k

attacker

1818Spectre attacks (3)

● Example 2: flow of the BTI (Branch Target Injection)
1. Preparation phase: Assume the attacker controls certain addressing elements such as registers R1

and R2. In Context A, use R1 and R2 (e.g., R2 = R2 + R1) to repeatedly jump to valid memory
addresses, gaining the BTB predictor's trust. The CPU predicts that "if the form of the jump
requests does not change, the next one will also be valid."

2. Access phase: In Context B, submit a request to access a malicious memory address, using a
similar “gadget” in the same form that can trigger BTB branch prediction. The CPU
immediately fetches the normally inaccessible protected information into the data cache.

3. Transmission phase: As in the final stage of BCB, although a rollback will be performed later by
the processor, the attacker can still use the data remained in the cache to conduct cache SCA,
indirectly inferring the secret data.

BTI is more dangerous than BCB:

BCB: Conducted along a restricted mispre
diction path. Access is limited to the addr
esses specified by conditional branch inst
ructions.

BTI: Takes over the entire control flow a
nd may access any desired memory addres
s without relying on conditional branch i
nstructions.

①

②

Fetched into D$
③ Secret leaked

attacker

1919Spectre attacks (4)

● Feasibility on RISC-V implementations
● When encompassing the transient execution

attacks discovered in the industry and
academia so far, more than 70 variants have
been identified, across multiple ISAs.

● From the perspective of RISC-V applicability,
all those published TEAs can be generally
classified into three categories:
1) Can be reliably reproduced on RISC-V

implementations

2) Depend on proprietary designs of other ISAs

3) Have not yet been explored
● Currently the 1) part is concentrated on

Spectre-type attacks.

CVE-
Names
(alias)

RISC-V references
(implementations)

2017-5753
BCB
(v1)

Gonzalez et al., UCB
 report, 2019
(BOOMv2, Tooba,
commercial chips)2017-5715

BTI
(v2)

2017-5754
RDCL

(Meltdown)

Lin et al, IEEE MWS
CAS 2022
(BOOMv3)

2018-3639
SSB
(v4)

Jin et al., ACM Trans
. Archit. Code Optim
. 2023
(BOOM, SSB also on
Tooba, ret2spec also
on Tooba and
commercial chips)

2018-15572
ret2spec

(v5)

Unindexed

SpectreRew
ind

Spectre-
TLB

Bombard Hur et al., ACM CCS
 2022
(BOOM, Nutshell)Birgus

Register
port

contention

Hu et al.
(BOOMv3)

https://people.eecs.berkeley.edu/~kubitron/courses/cs262a-F18/projects/reports/project4_report.pdf
https://people.eecs.berkeley.edu/~kubitron/courses/cs262a-F18/projects/reports/project4_report.pdf
https://ieeexplore.ieee.org/document/9859354/
https://ieeexplore.ieee.org/document/9859354/
https://dl.acm.org/doi/10.1145/3566053
https://dl.acm.org/doi/10.1145/3566053
https://dl.acm.org/doi/10.1145/3566053
https://dl.acm.org/doi/10.1145/3548606.3560578
https://dl.acm.org/doi/10.1145/3548606.3560578
https://mp.weixin.qq.com/s/ke8tBpJ7NpvUEAecov--UQ

2020Spectre attacks (5)

● Mitigation
● From our observation of the progress,

Spectre countermeasure proposals in
RISC-V implementations can be roughly
attributed with 4 tags:
1. Theoretical check (mainly formal verification)

2. Software: SLH derivations (mainly against
BCB), Retpoline derivations (mainly against BTI
or ret2spec), etc.

3. Hardware redesign

4. Utilizing machine learning (ML)

● Previous work[7] also classifies methods of
verification for TEAs on all ISAs into 4
types according to stages of design:
● Formal model
● Pre-silicon
● Post-silicon
● Software-only

Proposal RISC-V reference Tags

SpecLFB
Cheng et al,

USENIX Security 2024
3

Indirect jumps
and calls

R. Bălucea and P. Irofti,
SecITC 2023

2

SpecTerminator
Jin et al,

ACM Trans. Archit. Code
Optim. 20, no. 1

1

ProSpeCT
Daniel et al,

USENIX Security 2023
1, 3

SpecDoctor
Hur et al,

ACM CCS 2022
1, 2

IntroSpectre
Ghaniyoun et al,

ISCA 2021
1, 2

SSE-RV
M. Sabbagh et al,

CARRV 2021
3

ML-based real
time detection

A.-T. Le et al,
IEEE Access, vol. 9, pp.
164597–164612, 2021

4

UPEC
Fadiheh et al,
DATE 2019

1, 3

SpecBuf
Gonzalez et al,

U. C. Berkeley report, 2018
3

2121Conclusion

● Points explained in this speech
● Optimizations of high-performance processors: OoO execution, speculative

execution, branch prediction, memory prediction
● Techniques of cache timing SCA
● Review papers of TEAs across different ISAs including RISC-V
● Variants and mitigation of Spectre attacks on RISC-V implementations

● Work in progress
● Evaluate Spectre-SSB on some academic RISC-V OoO processors.
● Test new TEAs on contemporary commercial RISC-V cores.

(For various reasons, we can not share details about these projects right now.)

● Plan
● Sort and systematize outcomes of the above efforts to form a

survey+experiment investigation for future RISC-V security researchers.

	Title page
	Self introduction
	Contents
	Background (1)
	Background (2)
	Background (3)
	Background (4)
	Background (5)
	Background (6)
	Cache timing side-channel attack (SCA) (1)
	Cache timing side-channel attack (SCA) (2)
	Cache timing side-channel attack (SCA) (3)
	Transient execution vulnerabilities (1)
	Transient execution vulnerabilities (2)
	Transient execution vulnerabilities (3)
	Spectre attacks (1)
	Spectre attacks (2)
	Spectre attacks (3)
	Spectre attacks (4)
	Spectre attacks (5)
	Conclusion

